Aplicaciones de la inteligencia artificial en la evaluación del aprendizaje en la educación superior beneficios, limitaciones y desafíos éticos
Palabras clave:
inteligencia artificial, evaluación del aprendizaje, educación superior, retroalimentación automatizada, tecnología educativaResumen
La presente revisión sistemática tuvo como objetivo analizar las aplicaciones de la inteligencia artificial (IA) en los procesos de evaluación del aprendizaje en la educación superior, identificando sus beneficios, limitaciones y desafíos actuales. Se revisaron diversas investigaciones científicas publicadas en los últimos cinco años, enfocándose en estudios que integran herramientas de IA como sistemas de retroalimentación automatizada, análisis predictivo del rendimiento estudiantil y calificación automatizada. Los resultados evidencian que la IA aporta eficiencia al proceso evaluativo, al reducir la carga docente, mejorar la retroalimentación y facilitar una evaluación más objetiva. Sin embargo, también se identifican barreras significativas, como la falta de formación docente, las desigualdades tecnológicas entre instituciones y las preocupaciones éticas relacionadas con la privacidad de los datos y la transparencia algorítmica. Además, se resalta la necesidad de un enfoque pedagógico sólido que integre la IA como apoyo y no como sustituto del juicio profesional docente. La implementación de estas tecnologías requiere políticas institucionales claras, formación continua y evaluación rigurosa de su impacto en el proceso de enseñanza-aprendizaje. Se concluye que la IA representa una herramienta con alto potencial transformador, siempre que sea aplicada de manera crítica, inclusiva y contextualizada
Referencias
Balfour, S. P. (2013). Assessing writing in MOOCs: Automated essay scoring and calibrated peer review™. Research & Practice in Assessment, 8, 40–48. https://www.rpajournal.com/dev/wp-content/uploads/2013/05/SF3.pdf
Ifenthaler, D., & Yau, J. Y.-K. (2020). Utilising learning analytics to support study success in higher education: A systematic review. Educational Technology Research and Development, 68, 1961–1990. https://doi.org/10.1007/s11423-020-09788-z
Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence Unleashed: An argument for AI in education. Pearson Education. https://www.pearson.com/content/dam/one-dot-com/one-dot-com/global/Files/about-pearson/innovation/open-ideas/Intelligence-Unleashed-Publication.pdf
Nissenbaum, H. (2004). Privacy as contextual integrity. Washington Law Review, 79(1), 119–157. https://digitalcommons.law.uw.edu/wlr/vol79/iss1/10
Selwyn, N. (2019). Should robots replace teachers? AI and the future of education. Polity Press.
Slade, S., & Prinsloo, P. (2013). Learning analytics: Ethical issues and dilemmas. American Behavioral Scientist, 57(10), 1510–1529. https://doi.org/10.1177/0002764213479366
Williamson, B., & Piattoeva, N. (2022). Objectivity as standardization in data-scientific educational governance: Grasping the global through the local. Research in Education, 113(1), 3–24. https://doi.org/10.1177/00345237211059846
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(39), 1–27. https://doi.org/10.1186/s41239-019-0171-0
Binns, R. (2018). Fairness in Machine Learning: Lessons from Political Philosophy. Proceedings of the 2018 Conference on Fairness, Accountability, and Transparency, 149–159. https://doi.org/10.1145/3287560.3287598
Brown, A. L., & Glaser, R. (2003). Assessment, Teaching, and Learning. In A. L. Brown & R. Glaser (Eds.), Advances in Instructional Psychology (Vol. 5, pp. 81–122). Routledge. https://doi.org/10.4324/9781410609255
Holmes, W., Bialik, M., & Fadel, C. (2021). Artificial Intelligence in Education: Promises and Implications for Teaching and Learning. Center for Curriculum Redesign. https://curriculumredesign.org/wp-content/uploads/AI-in-Education-Promises-and-Implications_June2021.pdf
Russell, S., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th ed.). Pearson. https://aima.cs.berkeley.edu/
Selwyn, N., & Eynon, R. (2020). Artificial Intelligence and the Future of Learning: An Evidence and Policy Review. Education and Technology Report, OECD. https://doi.org/10.1787/708bf67d-en
Shermis, M. D., & Burstein, J. (2013). Handbook of Automated Essay Evaluation: Current Applications and New Directions. Routledge. https://doi.org/10.4324/9780203122761
Siemens, G., & Long, P. (2011). Penetrating the Fog: Analytics in Learning and Education. EDUCAUSE Review, 46(5), 30–40. https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in-learning-and-education
Slade, S., & Prinsloo, P. (2013). Learning Analytics: Ethical Issues and Dilemmas. American Behavioral Scientist, 57(10), 1510–1529. https://doi.org/10.1177/0002764213479366
VanLehn, K. (2011). The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other Tutoring Systems. Educational Psychologist, 46(4), 197–221. https://doi.org/10.1080/00461520.2011.611369
Williamson, B., & Eynon, R. (2020). Historical Threads, Missing Links, and Future Directions in AI in Education. Learning, Media and Technology, 45(3), 223–235. https://doi.org/10.1080/17439884.2020.1798995
American Psychological Association. (2020). Publication Manual of the American Psychological Association (7th ed.). https://doi.org/10.1037/0000165-000
Booth, A., Sutton, A., & Papaioannou, D. (2016). Systematic Approaches to a Successful Literature Review (2nd ed.). SAGE Publications. https://uk.sagepub.com/en-gb/eur/systematic-approaches-to-a-successful-literature-review/book245359
Gough, D., Oliver, S., & Thomas, J. (2017). An Introduction to Systematic Reviews (2nd ed.). SAGE Publications. https://doi.org/10.4135/9781473921290
Grant, M. J., & Booth, A. (2009). A Typology of Reviews: An Analysis of 14 Review Types and Associated Methodologies. Health Information & Libraries Journal, 26(2), 91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x
Nowell, L. S., Norris, J. M., White, D. E., & Moules, N. J. (2017). Thematic Analysis: Striving to Meet the Trustworthiness Criteria. International Journal of Qualitative Methods, 16(1), 1–13. https://doi.org/10.1177/1609406917733847
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
Snyder, H. (2019). Literature Review as a Research Methodology: An Overview and Guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
Caballé, S., & Conesa, J. (2020). Artificial Intelligence and Analytics for Education: A European Perspective. https://doi.org/10.1007/978-3-030-43786-6_3
Chan, K. K. H., & Hu, R. (2023). Ethical implications of using AI in educational assessment. Computers & Education, 205, 105059. https://doi.org/10.1016/j.compedu.2023.105059
Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. Applied Sciences, 10(2), 403. https://doi.org/10.3390/app10020403
Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial Intelligence in Education: Promises and Implications for Teaching and Learning. Center for Curriculum Redesign. https://curriculumredesign.org/wp-content/uploads/AI-in-Education.pdf
Ifenthaler, D., & Yau, J. Y.-K. (2020). Utilising learning analytics to support study success in higher education: A systematic review. Computers & Education, 153, 103998. https://doi.org/10.1016/j.compedu.2020.103998
Roschelle, J., Lester, J., & Fusco, J. (2017). Real-Time Assessment and Feedback in Classrooms: The Role of Artificial Intelligence. In Luckin, R. et al. (Eds.), Enhancing Learning and Teaching with Technology (pp. 111–129). https://doi.org/10.1007/978-3-319-61425-0_8
Tsai, Y. S., & Gasevic, D. (2017). Learning analytics in higher education—Challenges and policies. Educational Technology & Society, 20(4), 116–128. https://doi.org/10.1080/10494820.2017.1339376
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education. International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0
Caballé, S., & Conesa, J. (2020). Artificial Intelligence and Analytics for Education: A European Perspective. https://doi.org/10.1007/978-3-030-43786-6_3
Chan, K. K. H., & Hu, R. (2023). Ethical implications of using AI in educational assessment. Computers & Education, 205, 105059. https://doi.org/10.1016/j.compedu.2023.105059
Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. Applied Sciences, 10(2), 403. https://doi.org/10.3390/app10020403
Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial Intelligence in Education: Promises and Implications for Teaching and Learning. Center for Curriculum Redesign. https://curriculumredesign.org/wp-content/uploads/AI-in-Education.pdf
Ifenthaler, D., & Yau, J. Y.-K. (2020). Utilising learning analytics to support study success in higher education: A systematic review. Computers & Education, 153, 103998. https://doi.org/10.1016/j.compedu.2020.103998
Roschelle, J., Lester, J., & Fusco, J. (2017). Real-Time Assessment and Feedback in Classrooms: The Role of Artificial Intelligence. In Luckin, R. et al. (Eds.), Enhancing Learning and Teaching with Technology (pp. 111–129). https://doi.org/10.1007/978-3-319-61425-0_8
Tsai, Y. S., & Gasevic, D. (2017). Learning analytics in higher education—Challenges and policies. Educational Technology & Society, 20(4), 116–128. https://doi.org/10.1080/10494820.2017.1339376
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education. International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Roger Audes Baltazar Flores (Autor/a)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
