Aplicaciones de la inteligencia artificial en la evaluación del aprendizaje en la educación superior beneficios, limitaciones y desafíos éticos

Autores/as

Palabras clave:

inteligencia artificial, evaluación del aprendizaje, educación superior, retroalimentación automatizada, tecnología educativa

Resumen

La presente revisión sistemática tuvo como objetivo analizar las aplicaciones de la inteligencia artificial (IA) en los procesos de evaluación del aprendizaje en la educación superior, identificando sus beneficios, limitaciones y desafíos actuales. Se revisaron diversas investigaciones científicas publicadas en los últimos cinco años, enfocándose en estudios que integran herramientas de IA como sistemas de retroalimentación automatizada, análisis predictivo del rendimiento estudiantil y calificación automatizada. Los resultados evidencian que la IA aporta eficiencia al proceso evaluativo, al reducir la carga docente, mejorar la retroalimentación y facilitar una evaluación más objetiva. Sin embargo, también se identifican barreras significativas, como la falta de formación docente, las desigualdades tecnológicas entre instituciones y las preocupaciones éticas relacionadas con la privacidad de los datos y la transparencia algorítmica. Además, se resalta la necesidad de un enfoque pedagógico sólido que integre la IA como apoyo y no como sustituto del juicio profesional docente. La implementación de estas tecnologías requiere políticas institucionales claras, formación continua y evaluación rigurosa de su impacto en el proceso de enseñanza-aprendizaje. Se concluye que la IA representa una herramienta con alto potencial transformador, siempre que sea aplicada de manera crítica, inclusiva y contextualizada

Referencias

Balfour, S. P. (2013). Assessing writing in MOOCs: Automated essay scoring and calibrated peer review™. Research & Practice in Assessment, 8, 40–48. https://www.rpajournal.com/dev/wp-content/uploads/2013/05/SF3.pdf

Ifenthaler, D., & Yau, J. Y.-K. (2020). Utilising learning analytics to support study success in higher education: A systematic review. Educational Technology Research and Development, 68, 1961–1990. https://doi.org/10.1007/s11423-020-09788-z

Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence Unleashed: An argument for AI in education. Pearson Education. https://www.pearson.com/content/dam/one-dot-com/one-dot-com/global/Files/about-pearson/innovation/open-ideas/Intelligence-Unleashed-Publication.pdf

Nissenbaum, H. (2004). Privacy as contextual integrity. Washington Law Review, 79(1), 119–157. https://digitalcommons.law.uw.edu/wlr/vol79/iss1/10

Selwyn, N. (2019). Should robots replace teachers? AI and the future of education. Polity Press.

Slade, S., & Prinsloo, P. (2013). Learning analytics: Ethical issues and dilemmas. American Behavioral Scientist, 57(10), 1510–1529. https://doi.org/10.1177/0002764213479366

Williamson, B., & Piattoeva, N. (2022). Objectivity as standardization in data-scientific educational governance: Grasping the global through the local. Research in Education, 113(1), 3–24. https://doi.org/10.1177/00345237211059846

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(39), 1–27. https://doi.org/10.1186/s41239-019-0171-0

Binns, R. (2018). Fairness in Machine Learning: Lessons from Political Philosophy. Proceedings of the 2018 Conference on Fairness, Accountability, and Transparency, 149–159. https://doi.org/10.1145/3287560.3287598

Brown, A. L., & Glaser, R. (2003). Assessment, Teaching, and Learning. In A. L. Brown & R. Glaser (Eds.), Advances in Instructional Psychology (Vol. 5, pp. 81–122). Routledge. https://doi.org/10.4324/9781410609255

Holmes, W., Bialik, M., & Fadel, C. (2021). Artificial Intelligence in Education: Promises and Implications for Teaching and Learning. Center for Curriculum Redesign. https://curriculumredesign.org/wp-content/uploads/AI-in-Education-Promises-and-Implications_June2021.pdf

Russell, S., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th ed.). Pearson. https://aima.cs.berkeley.edu/

Selwyn, N., & Eynon, R. (2020). Artificial Intelligence and the Future of Learning: An Evidence and Policy Review. Education and Technology Report, OECD. https://doi.org/10.1787/708bf67d-en

Shermis, M. D., & Burstein, J. (2013). Handbook of Automated Essay Evaluation: Current Applications and New Directions. Routledge. https://doi.org/10.4324/9780203122761

Siemens, G., & Long, P. (2011). Penetrating the Fog: Analytics in Learning and Education. EDUCAUSE Review, 46(5), 30–40. https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in-learning-and-education

Slade, S., & Prinsloo, P. (2013). Learning Analytics: Ethical Issues and Dilemmas. American Behavioral Scientist, 57(10), 1510–1529. https://doi.org/10.1177/0002764213479366

VanLehn, K. (2011). The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other Tutoring Systems. Educational Psychologist, 46(4), 197–221. https://doi.org/10.1080/00461520.2011.611369

Williamson, B., & Eynon, R. (2020). Historical Threads, Missing Links, and Future Directions in AI in Education. Learning, Media and Technology, 45(3), 223–235. https://doi.org/10.1080/17439884.2020.1798995

American Psychological Association. (2020). Publication Manual of the American Psychological Association (7th ed.). https://doi.org/10.1037/0000165-000

Booth, A., Sutton, A., & Papaioannou, D. (2016). Systematic Approaches to a Successful Literature Review (2nd ed.). SAGE Publications. https://uk.sagepub.com/en-gb/eur/systematic-approaches-to-a-successful-literature-review/book245359

Gough, D., Oliver, S., & Thomas, J. (2017). An Introduction to Systematic Reviews (2nd ed.). SAGE Publications. https://doi.org/10.4135/9781473921290

Grant, M. J., & Booth, A. (2009). A Typology of Reviews: An Analysis of 14 Review Types and Associated Methodologies. Health Information & Libraries Journal, 26(2), 91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x

Nowell, L. S., Norris, J. M., White, D. E., & Moules, N. J. (2017). Thematic Analysis: Striving to Meet the Trustworthiness Criteria. International Journal of Qualitative Methods, 16(1), 1–13. https://doi.org/10.1177/1609406917733847

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71

Snyder, H. (2019). Literature Review as a Research Methodology: An Overview and Guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Caballé, S., & Conesa, J. (2020). Artificial Intelligence and Analytics for Education: A European Perspective. https://doi.org/10.1007/978-3-030-43786-6_3

Chan, K. K. H., & Hu, R. (2023). Ethical implications of using AI in educational assessment. Computers & Education, 205, 105059. https://doi.org/10.1016/j.compedu.2023.105059

Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. Applied Sciences, 10(2), 403. https://doi.org/10.3390/app10020403

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial Intelligence in Education: Promises and Implications for Teaching and Learning. Center for Curriculum Redesign. https://curriculumredesign.org/wp-content/uploads/AI-in-Education.pdf

Ifenthaler, D., & Yau, J. Y.-K. (2020). Utilising learning analytics to support study success in higher education: A systematic review. Computers & Education, 153, 103998. https://doi.org/10.1016/j.compedu.2020.103998

Roschelle, J., Lester, J., & Fusco, J. (2017). Real-Time Assessment and Feedback in Classrooms: The Role of Artificial Intelligence. In Luckin, R. et al. (Eds.), Enhancing Learning and Teaching with Technology (pp. 111–129). https://doi.org/10.1007/978-3-319-61425-0_8

Tsai, Y. S., & Gasevic, D. (2017). Learning analytics in higher education—Challenges and policies. Educational Technology & Society, 20(4), 116–128. https://doi.org/10.1080/10494820.2017.1339376

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education. International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0

Caballé, S., & Conesa, J. (2020). Artificial Intelligence and Analytics for Education: A European Perspective. https://doi.org/10.1007/978-3-030-43786-6_3

Chan, K. K. H., & Hu, R. (2023). Ethical implications of using AI in educational assessment. Computers & Education, 205, 105059. https://doi.org/10.1016/j.compedu.2023.105059

Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. Applied Sciences, 10(2), 403. https://doi.org/10.3390/app10020403

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial Intelligence in Education: Promises and Implications for Teaching and Learning. Center for Curriculum Redesign. https://curriculumredesign.org/wp-content/uploads/AI-in-Education.pdf

Ifenthaler, D., & Yau, J. Y.-K. (2020). Utilising learning analytics to support study success in higher education: A systematic review. Computers & Education, 153, 103998. https://doi.org/10.1016/j.compedu.2020.103998

Roschelle, J., Lester, J., & Fusco, J. (2017). Real-Time Assessment and Feedback in Classrooms: The Role of Artificial Intelligence. In Luckin, R. et al. (Eds.), Enhancing Learning and Teaching with Technology (pp. 111–129). https://doi.org/10.1007/978-3-319-61425-0_8

Tsai, Y. S., & Gasevic, D. (2017). Learning analytics in higher education—Challenges and policies. Educational Technology & Society, 20(4), 116–128. https://doi.org/10.1080/10494820.2017.1339376

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education. International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0

Descargas

Publicado

2025-06-04

Cómo citar

Baltazar Flores, R. A. . (2025). Aplicaciones de la inteligencia artificial en la evaluación del aprendizaje en la educación superior beneficios, limitaciones y desafíos éticos. Innovarium International Journal, 3(2), 1-13. https://revinde.org/index.php/innovarium/article/view/60

Artículos similares

1-10 de 61

También puede Iniciar una búsqueda de similitud avanzada para este artículo.